Hypercyclic Operators

One of the roots of the modern study of  hypercyclicity comes from an intriguing observation of  G .D. Birkhoff”s concerning the orbits of translation operators acting on the space of entire functions.This article contains 4 chapter,that in first chapter we state the elementary difinations and proof some necesury theorem. And in late we state the history of hypercyclic operators.In section 1 of chapter 2 we cheking the hypercyclic and supercyclic vectors and some properties from those vectors. In continuation we introduce the invariant subspace, afterward, we state hypercyclic criterion. In continuance, we state hypercyclic criterion theorem and proof them.In this chapter we also proof that, If all non-zero vectors of Hilbert space are hypercyclic for operator T , Then T have no non-trivial closed invariant subsets. In section2 of this chapter we deliberation Invariant manifolds of hypercyclic vectors for the real scalar case. In chapter 3 we deliberation the spaces that admit hypercyclic operators whit hypercyclic adjoints. Also, we show that each hypercyclic operator on rael locally convex vector space, have a dense variant linear manifold of hypercyclic vectors. For this,Whit state the Salas theory,  we introduce such spaces.Whit definition of showther basis , orthogonal basis and shrinking basis, we introduce some of the spaces that admit hypercyclic operator whit hypercyclic adjoint.In chapter 4 we study hypercyclic differentiation operators, For this, we deliberation the space of entire functions of one complex variable, endowed with the topology of uniform convergence on compact subsets of the plane.

درباره ریاضی

img/daneshnameh_up/6/62/mathematical1.jpg


ریاضیات عموما مطالعه الگوی ساختار، تحول، و فضا تعریف شده است؛ بصورت غیر رسمی تر، ممکن است بگویند مطالعهاعداد و اشکال است.تعریف ریاضیات بر حسب وسعت دامنة آن و نیز بسط دامنة فکر ریاضی تغییر کرده است.
ریاضیات زبانی خاص خود دارد،که در آن به جای کلمات و علائم نقطه گذاری از اعداد و نمادها استفاده میشود. در منظر صاحبان فکر، تحقیق بدیهیات ساختارهای مجرد تعریف شده، با استفاده از منطق و نماد سازی ریاضی میباشد.
نخستین اعداد ثبت شده خطوطی بودند که روی یک چوب کشیده میشدند،که اصطلاحا آنها را چوبخط مینامیدند.این خطوط به شکل دسته های کوچک دو یا پنج تایی کشیده میشدند.سرانجام به این دسته ها نمادهای خاصی اختصاص داده شد(5،2 و غیره)و یک دستگاه حساب ایجاد شد.
ریاضیدانان نمادهای خاصی را به جای کلماتی از قبیل به اضافه و مساوی است با وضع کردند،همچنین کلمات خاصی را برای بیان مفاهیم جدید ابداع کردند.
چنانکه زمانی آن ار علم عدد ، زمانی علم فضا ، گاه علم کمیات ، و زمانی علم مقادیر متصل و منفصل خوانده اند.ریاضیات درباره حساب ، هندسه ، جبر و مقابله بحث می کند که ما در اینجا به سراغ تاریخ هر یک از آنها می رویم.
ساختارهای بخصوصی که در ریاضیات مورد تحقیق و بررسی قرار میگیرند اغلب در علوم طبیعی منشاء دارند، و بسیار عمومی در فیزیک، ولی ریاضیات ساختارهای دلایلی را نیز بررسی می نماید که بصورت خالص در مورد باطن ریاضی است، زیرا ریاضیات می توانند برای مثال، یک عمومیت متحد شده را برای زیر-میدانهای متعدد، یا ابزارهای مفید را برای محاسبات عمومی، فراهم نماید. در نهایت، ریاضیدانان بسیاری در مورد مطالبی که مطالعه می نمایند که منحصرا دلایل علمی محض داشته، ریاضیات را بصورت هنری برای پروراندن علم، صرف نظر از تجربی یا کاربردی، می نگرند.
حساب ، علم اعداد است. واژه انگلیسی حساب ، از کلمه ای یونانی به معنای اعداد گرفته شده است.
در آغاز شهرنشینی ، انسان گوسفندان ، گاوها و سایر حیوانات خود را با انگشتانش می شمرد. در واقع کلمة دیژیت که برای شمارش اعداد از 0 تا 9 به کار می رود، از یک کلمة لاتین به معنای انگشت گرفته شده است.
بعدها انسان با علامت زدن روی چوب یا درخت ، اشیاء را می شمرد. اما این روش به زودی جای خود را به استفاده از علامتهایی باری هر یک از اعداد داد.
هندسه مطالعه انواع مختلف اشکال و خصوصیات آنهاست. همچنین مطالعه ارتباط میان اشکال ، زوایا و فواصـل است.